
Towards Predictive Cities: 
Modeling Spatio-Temporal Data in the AI Era

Xia Yutong

PhD Candidate

Institute of Data Science

National University of Singapore

0April 19, 2025

Slides for this Talk



Outline

Background
• What makes cities predictable?

• Spatio-Temporal (ST) Data & Properties
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Spatio-Temporal Graph Forecasting
• What is Spatio-Temporal Graph (STG)?
• What is STG forecasting?
• How we do it?

• Application-Driven (Air Quality, Traffic, Parking)

• Theory-Driven (Causality, Uncertainty)

Beyond Prediction: What’s Next?
• LLMs-powered Agents & Causal Urban Insight
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Cities Are Alive
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Cities are not static 
structures. They are dynamic 
organisms — pulsing with 
people, data, and change.



Cities Are Alive — And Becoming Predictive
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AI is a Powerful ToolCities are Data-Rich

Nowadays…

+

Recent advances in sensing technologies (e.g., IoT 
devices, mobile apps, satellite imagery, and urban 
sensors) have enabled the continuous collection 
of rich spatio-temporal data.

Advances in AI (ML/DL/LLM) provide tools to 
analyze complex patterns, forecast urban 
dynamics, and support data-driven decision-
making.



Foundation Models
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Foundation Models: From NLP to Multimodal
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M. Jin et al., Large Models for Time Series and Spatio-Temporal Data: A Survey and Outlook. arXiv 2023. 



Foundation Models: From General to STFMs

April 19, 2025 8Y. Liang, H. Wen, Y. Xia et al., Foundation Models for Spatio-Temporal Data Science: A Tutorial and Survey. arXiv 2025.

FMs and LLMs are now capable of supporting 
the entire urban Spatio-Temporal Data 
Science lifecycle.

Survey Paper



Spatio-Temporal (ST) Data

• Spatio-Temporal (ST) Data is data that changes both over space and time. 
Tells us not just what is happening, but also where and when it’s happening.

• Type of Urban ST Data
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Spatial and Temporal Properties

• Spatial Properties

• Temporal Properties
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Temporal PeriodicityTemporal Closeness Trend

Y. Zheng. Urban Computing. MIT Press, 2019. 

Spatial Hierarchy Spatial Closeness Spatial Distance
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Spatio-Temporal Graph Forecasting
• What is Spatio-Temporal Graph (STG)?
• What is STG forecasting?
• How we do it?

• Application-Driven (Air Quality, Traffic, Parking)

• Theory-Driven (Causality, Uncertainty)

Beyond Prediction: What’s Next?
• LLMs-powered Agents & Causal Urban Insight
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Spatio-Temporal Graph Forecasting
• What is Spatio-Temporal Graph (STG)?
• What is STG forecasting?
• How we do it?

• Application-Driven (Air Quality, Traffic, Parking)

• Theory-Driven (Causality, Uncertainty)



Spatio-Temporal Graph (STG) Data

• Spatio-Temporal Graph (STG) is one type of ST data, which represents the spatial and 
temporal relationships between nodes or entities.

timet0 t1 t2 t𝑛−2 t𝑛−1 t𝑛

…

Graph Spatio-Temporal Graph 
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Spatio-Temporal Graph (STG) Data

• Spatio-Temporal Graph (STG) is one type of ST data, which represents the spatial and 
temporal relationships between nodes or entities.

Graph Spatio-Temporal Graph (Series) 
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?



Spatio-Temporal Graph (STG) Data

• Graph Construction Methods 
• Topology-based graph

• Distance-based graph 

• Similarity-based graph

• Interaction-based graph 
 
 

April 19, 2025 16G. Jin et al. Spatio-Temporal Graph Neural Networks for Predictive Learning in Urban Computing: A Survey. TKDE. 2023. 



STG Forecasting Problem

• STG forecasting has become crucial in the context of smart cities (e.g. 
Air quality prediction, traffic flow forecasting…)

19-Apr-25 17

ℱ(∙)

Historical Data 𝑿 𝑡−𝑆 :𝑡

   Graph Structure 𝑮

Timestamps: 𝑆

Future Data 𝒀𝑡:𝑡+𝑇

Timestamps: 𝑇



STG Forecasting Method
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How to learn ℱ(∙)?

Theory-Driven

• Causal Inference
• Uncertainty Awareness

Application-Driven

• Air Quality
• Traffic Flow
• Parking Availability



Application-Driven Method

AirFormer (AAAI’23)

• Challenges: Inefficiency & Uncertainty

• Solution:
• Bottom-up deterministic stage

• Dartboard Spatial-MSA (DS-MSA)

• Causal Temporal-MSA (CT-MSA)

• Top-down stochastic stage

• Generation model

• Inference model
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𝒪 𝑁2𝐶   MSA

𝒪 𝑁𝑀𝐶  our DS-MSA

𝑁: #stations
𝑀: #regions 

Reduced

𝒪 𝑇2𝐶   MSA

𝒪 𝑇𝑊𝐶  our DS-MSA

𝑇: #time stamps
𝑊: #windows 

Reduced

DS-MSA

CT-MSA

Y. Liang, Y. Xia et al., AirFormer: Predicting Nationwide Air Quality in China with Transformers. AAAI 2023.

Traffic Flow Forecasting Parking Availability ForecastingAir Quality Forecasting



Application-Driven Method

LargeST (NeurIPS’23)
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Parking Availability ForecastingAir Quality Forecasting

X. Liu, Y. Xia et al., LargeST: A Benchmark Dataset for Large-Scale Traffic Forecasting. NeurIPS 2023.

Traffic Flow Forecasting

Dataset 
& Code

Scale: Existing datasets (e.g., PeMS03, PeMS04) contain only hundreds 
of sensors, not reflecting real-world traffic network scales.

Temporal Coverage: Typically cover less than 6 months, hindering 

the study of long-term patterns.

Metadata: Often lack comprehensive sensor metadata, affecting data 
reliability and interpretability

Motivation – Limitation in Existing Dataset

Larger Graph Size: 8,600 sensors across California.

Higher Temporal Coverage: 5 years of data (2015–2019) with a 5-

minute sampling rate.

Richer Node Metadata: Includes sensor ID, location, highway 

category, number of lanes, and direction.

Subsets: Provides regional subsets for Greater Los Angeles (GLA), Greater 

Bay Area (GBA), and San Diego (SD).

LargeST - A new large-scale dataset



Application-Driven Method
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Cross-domain Data

Parking Availability Data

A New Dataset  +  A Novel Data-driven Method

DeepPA + SINPA (IJCAI’24)

Predicting Parking Availability in Singapore with Cross-Domain Data

Traffic Flow Forecasting Parking Availability ForecastingAir Quality Forecasting

Dataset 
& Code



For application, we also deploy our cutting-edge AI solutions on large-scale cloud platforms

Application-Driven Method

H. Zhang*, Y. Xia*, et al., Predicting Parking Availability in Singapore with Cross-Domain Data: A New Dataset and A Data-Driven Approach. (IJCAI’24)

Q. Wang, Y. Xia, et al., AirRadar: Inferring Nationwide Air Quality in China with Deep Neural Networks . (AAAI’25)

Air Quality Inference in ChinaParking Availability Prediction in Singapore
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STG Forecasting Method
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How to learn ℱ(∙)?

Theory-Driven

• Causal Inference
• Uncertainty Awareness

Application-Driven

• Air Quality
• Traffic Flow
• Parking Availability
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Theory-Driven - Causal Inference

April 19, 2025 26

‘Black-box’ DL modelsInput output

A casual lens?

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement



Theory-Driven - Causal Inference
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• Causal Inference is the process of determining if a relationship between 
two things is a cause-and-effect relationship.

• Correlation doesn’t mean causality.

Ice cream 
sales

Weather

Thermometer
temperature

Causality

Correlation

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement



Theory-Driven - Causal Inference

• Why? - Advantage of a causal lens
• Improved Interpretability

• Real-world insights for better model design 

• Enhanced generalization

• How? – A big picture

April 19, 2025 28

Causal tools DL implement
Underlying 
causal systems

Integrating deep learning with causal inference, we craft models that are 
not only accurate but truly understand the real world.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement



Theory-Driven - Causal Inference
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Structure Causal Model

𝑿 𝒀

Traditional model

𝑿 𝒀

𝑪𝑬

Underlying causal system

Temporal
environment

Spatial 
context

Historical 
signals

Future 
signals

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation Experiments ResultsCausal Tools A DL ImplementA Causal Lens on STG Forecasting



Theory-Driven - Causal Inference
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Structure Causal Model

𝑿 𝒀

Traditional model

• 𝑿  𝑬→ 𝒀: The temporal Out-of-Distribution (OoD) can arise due to changes in external variables over 
time (e.g., weather can affect traffic flow observations).

• 𝑿  𝑪 → 𝒀: 𝑿 and 𝒀 are intrinsically affected by the surrounding spatial context, comprising both spurious 
and genuine causal components. 

• 𝑿 → 𝒀: Our primary prediction goal.

𝑿 𝒀

𝑪𝑬

Underlying causal system

Temporal
environment

Spatial 
context

Historical 
signals

Future 
signals

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

𝑃𝐴(𝑋) ≠ 𝑃𝐵(𝑋) ≠ 𝑃𝑡𝑒𝑠𝑡 (𝑋)

Motivation Experiments ResultsCausal Tools A DL ImplementA Causal Lens on STG Forecasting
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Structure Causal Model

𝑿 𝒀

Traditional model
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Motivation Experiments ResultsCausal Tools A DL ImplementA Causal Lens on STG Forecasting
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Structure Causal Model

𝑿 𝒀

Traditional model

𝑿 𝒀

𝑪𝑬

Underlying causal system

• 𝑿  𝑬→ 𝒀: The temporal Out-of-Distribution (OoD) can arise due to changes in external variables over 
time (e.g., weather can affect traffic flow observations).

• 𝑿  𝑪 → 𝒀: 𝑿 and 𝒀 are intrinsically affected by the surrounding spatial context, comprising both spurious 
and genuine causal components. 

• 𝑿 → 𝒀: Our primary goal.

Temporal
environment

Spatial 
context

Historical 
signals

Future 
signals

Confounding factors

Backdoor paths

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation Experiments ResultsCausal Tools A DL ImplementA Causal Lens on STG Forecasting



Theory-Driven - Causal Inference
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𝑿 𝒀

𝑪𝑬

Assumption: 𝑬 and 𝑪 are independent

Aim: 𝑃 𝑌 𝑑𝑜(𝑋)

Step 1. Back-door adjustment for 𝑬

෍
𝑒
𝑃 𝑌 𝑋, 𝐸 = 𝑒 𝑃(𝐸 = 𝑒)

Step 2. Front-door adjustment for 𝑪

෍
𝑥∗

෍
𝑥′

𝑃(𝑋∗ = 𝑥∗|𝑋) 𝑃 𝑌 𝑋∗ = 𝑥∗, 𝑋 = 𝑥′ 𝑃(𝑋 = 𝑥′)

𝑿∗

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsA DL ImplementCausal Tools



Theory-Driven - Causal Inference
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• To achieve Back-door adjustment …

෍
𝑒
𝑃 𝑌 𝑋, 𝐸 = 𝑒 𝑃(𝐸 = 𝑒)

1) Separate the entity and the environments

2) Discretizing the environment

𝑿 𝒀

𝑪𝑬

𝑿∗

• To achieve Front-door adjustment …

• Obtain a surrogate entity

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsA DL ImplementCausal Tools



Theory-Driven - Causal Inference
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Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)
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Back-door adjustment

(1) Separate Environment & Entity

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)



Theory-Driven - Causal Inference
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Back-door adjustment

(2) Discretizing the environments

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)



Theory-Driven - Causal Inference
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Front-door adjustment

But how?

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)



Theory-Driven - Causal Inference
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• To achieve Back-door adjustment …

෍
𝑒
𝑃 𝑌 𝑋, 𝐸 = 𝑒 𝑃(𝐸 = 𝑒)

1) Separate the entity and the environments

2) Discretizing the environment

• To achieve Front-door adjustment …

• Obtain a surrogate entity – But how?

• Data/task-specific challenge – Causation’s ripple effect

• Solution – Graph convolution networks?

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement
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• To achieve Back-door adjustment …

෍
𝑒
𝑃 𝑌 𝑋, 𝐸 = 𝑒 𝑃(𝐸 = 𝑒)

1) Separate the entity and the environments

2) Discretizing the environment

• To achieve Front-door adjustment …

• Obtain a surrogate entity – But how?

• Data/task-specific challenge – Causation’s ripple effect

• Solution – Graph Edge convolution networks

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement



Theory-Driven - Causal Inference
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Front-door adjustment

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)



Theory-Driven - Causal Inference
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Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Causal Spatio-Temporal neural network (CaST)



Theory-Driven - Causal Inference

• Datasets: PEMS08, AIR-BJ, AIR-GZ

• Experiment settings: predict over next 24 steps given past 24 steps

• Evaluation metrics: MAE, RMSE

April 19, 2025 43
Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Traffic Flow Air Quality 

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Effectiveness & Generalizability

Interpretability



Dynamic Spatial Causation
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Temporal Environments

Y. Xia, Y. Liang et al., Deciphering Spatio-Temporal Graph Forecasting: A Causal Lens and Treatment. NeurIPS 2023.

Motivation A Causal Lens on STG Forecasting Experiments ResultsCausal Tools A DL Implement

Effectiveness & Generalizability

Interpretability

Theory-Driven - Causal Inference



STG Forecasting Method
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How to learn ℱ(∙)?

Theory-Driven

• Causal Inference
• Uncertainty Awareness

Application-Driven

• Air Quality
• Traffic Flow
• Parking Availability



Theory-Driven - Uncertainty
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Background – DDPM Experiments ResultsKey Challenges Our Solution - DiffSTGMotivation

ℱ(∙)

Historical Data 𝑿 𝑡−𝑆 :𝑡

   Graph Structure 𝑮

Timestamps: 𝑆

Future Data 𝒀𝑡:𝑡+𝑇

Timestamps: 𝑇

Can deterministic models handle real-world 
complexity?

Deterministic output

What about …

Urban dynamics are inherently uncertain.



Theory-Driven - Uncertainty

47J. Ho et al., Denoising diffusion probabilistic models. NeurIPS 2020.

Motivation Experiments ResultsKey Challenges Our Solution - DiffSTGBackground – DDPM

0x
1tx − tx Tx… …

0x
1tx − tx Tx… …

1( | )t tq x x −

-1( | )t tp x x

Forward Process
➢ Markov chain 
➢ Fixed process
➢ add noise  

Reverse Process 
➢ Markow chain
➢ remove noise

April 19, 2025

Denoising diffusion probabilistic models (DDPM) - A powerful generative model 



Theory-Driven - Uncertainty

48

1. How to generalize DDPM to stochastic STG forecasting?

2. How to capture the ST-correlation in 𝑝𝜃?

3. How to make it efficient in the reverse process?

April 19, 2025

Motivation Background – DDPM Experiments ResultsOur Solution - DiffSTGKey Challenges



Theory-Driven - Uncertainty

49H. Wen, Lin Y, Y. Xia et al., DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models. SIGSPATIAL’23.April 19, 2025

Motivation Background – DDPM Experiments ResultsKey Challenges Our Solution - DiffSTG
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1. Generalize 
DDPM to STG 
forecasting - 
DiffSTG

2. Capture the 
ST-correlation 
in 𝑝𝜃 - UGnet

3. Efficient in the 
reverse process – 
One diffusion loop 
for all predictions + 
skip diffusion steps



Theory-Driven - Uncertainty

50H. Wen, Lin Y, Y. Xia et al., DiffSTG: Probabilistic Spatio-Temporal Graph Forecasting with Denoising Diffusion Models. SIGSPATIAL’23.April 19, 2025

Motivation Background – DDPM Experiments ResultsKey Challenges Our Solution - DiffSTG

Results

Datasets Metrics
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Spatio-Temporal Graph Forecasting
• What is Spatio-Temporal Graph (STG)?
• What is STG forecasting?
• How we do it?

• Application-Driven (Air Quality, Traffic, Parking)

• Theory-Driven (Causality, Uncertainty)

Beyond Prediction: What’s Next?
• LLMs-powered Agents & Causal Urban Insight
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Beyond Prediction: What’s Next?
• LLMs-powered Agents & Causal Urban Insight



The Road Ahead
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Beyond Prediction: 
Toward a More Intelligent 
and Accessible Urban Causal Analysis

What next?

We don’t just want to predict cities — we want to understand them.
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Causal or 
coincidence?

Do food court closures cause more people to order delivery?

Well, I’ll just order 
GrabFood instead.

Urban Causal Research



Urban Causal Research
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Causal or 
coincidence?

Do food court closures cause more people to order delivery?

Confounding factors: time of year, ongoing promotions, income levels, weather

Outcome

Treatment

Control
Variable

Unobersved
Confounders

Stochastic
Error

Causal
Effect

This is where causal inference tools become necessary.



Urban Causal Research
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Causal or 
coincidence?

Do food court closures cause more people to order delivery?

Confounding factors: time of year, ongoing promotions, income levels, weather

Outcome

Treatment

Control
Variable

Unobersved
Confounders

Stochastic
Error

Causal
Effect

This is where causal inference tools become necessary.

Urban 
Phenomenon

+

Causal Inference



Current Landscape of Urban Causal Research

Systematic Review
• Journal: Cities

• # total urban-related papers: 2,428 articles

• # total causal inference papers: 219 articles

• Timespan: 2012–2021

April 19, 2025 57

Key Findings:
• Trend: growing adoption

Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.
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Key Findings:
• Trend: growing adoption



Current Landscape of Urban Causal Research

Systematic Review
• Journal: Cities

• # total urban-related papers: 2,428 articles

• # total causal inference papers: 219 articles

• Timespan: 2012–2021
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Key Findings:
• Trend: growing adoption
• Region: geographical imbalances
• Data: a heavy reliance on structured data
• Method: limited methodological diversity
• Code: poor reproducibility

Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.



Manual Urban Causal Research
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- Challenges in timely and novel 
question formulation
- Subjectivity in hypothesis 
formation

- Multimodal, multisource, and 
multiresolution data complexity 
- Repetitive manual data 
integration and cleaning

- Difficulty selecting the most 
suitable causal inferece 
methods
- Ensuring methodological rigor

- Translating findings into 
generalizable, policy-relevant 
insights
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Agent

Enviroment

Perception

Action

Brain

Large Language Models (LLMs)

Contextual 
Understanding

Creativity

Tool Use

Data 
Integration

Programming

Writing

LLM-powered 
Agents?

What can they do?



A Multi-Agents System - Smallville Town

April 19, 2025 66J. Park et al., Generative Agents: Interactive Simulacra of Human Behavior. UIST 2023.

What happens when putting multiple agents together in an environment?
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What if we created a team of agents to simulate an urban research lab?

Agent 7Agent 4 Agent 5 Agent 6

Agent 1 Agent 2 Agent 3
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What if we created a team of agents to simulate an urban research lab?

Urban Scientist Data Scientist

Data EngineerReader Experimenter Writer

Validator
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Hypothesis Generation Agents
[Mode] Theory-Driven 
[Mode] Data-Driven
[Mode] Practice-Driven 

Urban Data Agents

CI Experiment Agents
[Mode] Randomized Designs
[Mode] Quasi-Experimental Methods
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[Mode] Robustness Test
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[Mode] Policy Narrative

[Mode] User-uploaded Data
[Mode] Web-based Retrieval 
[Mode] Simulation-based Data

AutoUrbanCI Framework
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Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.
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What if we created a team of agents to simulate an urban research lab?

Urban Scientist
Data Scientist

Data EngineerReader Experimenter Writer

Validator
Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.
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Urban Scientist
Data Scientist

Data EngineerReader Experimenter Writer

Hypothesis: ”In NYC, congestion pricing reduces average 
commute times less significantly in low-income neighborhoods 
than in higher-income areas.”
Required Data: Subway/bus logs, taxi trips, street view images, 
social media posts, and census income data.

Adjust hypothesis based on policy 
needs, define data requirements

Validate Hypothesis & Define 
Data Needs

Validator

NYC congestion pricing

Announcement (Source: MTA)

Tweets from local transit 

activists 

A paper on Stockholm's 

congestion pricing (Börjesson et 

al., 2012)

Refine 
Hypothesis

Hypothesis Generation

Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.

https://www.bbc.com/news/articles/cvgk5pew592o
https://doi.org/10.1016/j.tranpol.2011.11.001
https://doi.org/10.1016/j.tranpol.2011.11.001
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Urban Scientist
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Preprocess

Multimodal, Multisource, Unstructured Data in NYC

Hypothesis: ”In NYC, congestion pricing reduces average 
commute times less significantly in low-income neighborhoods 
than in higher-income areas.”
Required Data: Subway/bus logs, taxi trips, street view images, 
social media posts, and census income data.
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https://www.bbc.com/news/articles/cvgk5pew592o
https://doi.org/10.1016/j.tranpol.2011.11.001
https://doi.org/10.1016/j.tranpol.2011.11.001
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Method: DiD with fixed effects, SCM as sensitivity check
Confounders: weather, route closure, service delay
Assumption checks: Parallel trend
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https://www.bbc.com/news/articles/cvgk5pew592o
https://doi.org/10.1016/j.tranpol.2011.11.001
https://doi.org/10.1016/j.tranpol.2011.11.001
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Title: Impact of Congestion 
Pricing on Low-Income 
Commuters in NYC
Abstract: This study 
examines how NYC’s 
congestion pricing policy 
influences commute times 
in low-income 
neighborhoods, using a 
difference-in-differences 
framework with 
neighborhood-level data. 
Key confounders are 
controlled, and sensitivity 
checks via SCM are 
performed.
Results: 
Commute times dropped 
by 6.xx% citywide, but only 
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• Assists and accelerates causal research

For Policy Makers

• Enhances evidence-based urban policy
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For Urban Researchers: 

• Assists and accelerates causal research

For Policy Makers

• Enhances evidence-based urban policy

For the Public:

• Lowers the barriers for citizens, journalists, and 
grassroots organizations to explore urban 
issues 

“Cities have the capability of providing something for everybody, only 

because, and only when, they are created by everybody.”

                                                        ― Jane Jacobs



Our Perspetive

AI won’t replace urban researchers,

but it can assist their thinking, accelerate their work, 

expand the horizons of urban science, and make urban 

insights a shared power.

That’s the future we’re building toward.

April 19, 2025 84Y. Xia*, A. Qu* et al., Reimagining Urban Science: Scaling Causal Inference with Large Language Models. arXiv 2025.



Takeaways

• Cities are predictable.
• STG forecasting gives us powerful tools to model these signals in domains like air 

quality and mobility.

• Application-driven modeling is tailored to the properties of specific data (e.g., air 
quality, traffic),

• Theory-driven approaches incorporate causal lens and uncertainty modeling for 
deeper insight.

• Towards prediction, what next?
• Toward a more intelligent and accessible urban causal analysis

• Large Language Models unlock new possibilities.
• Not to replace urban scientists, but assist their thinking, accelerate their work, expand 

the horizons of urban science, and make urban insights a shared power.
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Thanks!
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